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Primary Questions

1) What is currently known about climate
drivers of fire and invasive species?

2) What are climate change projections for
American Deserts?

3) How will climate change manifest in

future fire regimes and spread of
Invasives?
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State of Knowledge on Fire-Climate Relationships

Two kinds of fire regimes based on fire-climate
relationships:

Flammability limited: Mesic Fuel limited: Xeric environments,
environments, continuous fuel bed, discontinuous fuel bed, always dry
not usually dry enough to burn enough to burn



State of Knowledge on Fire-Climate Relationships

Ecosystems exhibit differential patterns in climate
drivers of fire regimes for the western US

Forest Wildfires
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State of Knowledge on Fire-Climate Relationships

Flammability Limited Systems
(sufficient fuel and moisture)
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Antecedent climate:
Dry winters + warm springs
Longer fire season “window”

|daho Rockies

correlation
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months before August

Contemporaneous moisture deficit plays a strong role In
Increasing fuel flammability



State of Knowledge on Fire-Climate Relationships

Fuel Limited Systems- American Deserts
(insufficient fuel and moisture)
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Antecedent climate:
*Moisture abundance drives increased fuel loading
*Perennials accumulate biomass through a moderate
response to moisture availability (1-2 year lag)

Leading moisture surplus (1-2 years) enhances fuel loading



State of Knowledge on Fire-Climate Relationships

CLIMATE includes more than just the means...

Sonoran Desert Region
Precipitation Dec-Feb
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State of Knowledge on Fire-Climate Relationships

Fire-ENSO Relationship Across the Southwest
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State of Knowledge on Fire-Climate Relationships

Fire-ENSO Relationship: Based on ENSO dipole
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State of Knowledge on Fire-Climate Relationships

2004-05: Weak to Moderate EI Nino
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State of Knowledge on Fire-Climate Relationships

\ Fuel lelted Systems- Cave Creek Fire (2005), 100K ha
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PDSI wetter

drier

"New” Fire-Climate relationship in
an invaded landscape?

24 18 12 6 0
months

Pre-Invasives: 1-2 year lag in moisture anomaly for fuel
loading to peak and wildfire potential to be enhanced

Post-Invasives: < 6 month lag in moisture anomaly to
enhanced fuel loadings and wildfire potential



Primary Questions
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Observations of Change

Jan-Oct Global Surface Mean Temp Anomalies
NCDC/NESDIS/NOAA (Smith and Revnolds. 2005)
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Oct 2008: Warmest Global Land Surface Temperature
Calendar Year to Date: 6" warmest on record (2007 warmest)



Observations of Change

Beyond just mean annual temperature...

[al 41

1960 1970 1980 1990 2000

[b]
11}

@ 10

g L

ari

\/W\

1960 1970 1880 1990 2000

Areal Average of 11 Western States

Spring:
+0.28°C/decade

Autumn:
+0.07°C/decade

Abatzoglou &
Redmond,
2007



Observations of Change

Asymmetric Trend in Cool Season Precipitation
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Projections also based on Emissions Scenarios
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Envelopes: Range of Expected Conditions from models



The “unknowns” = many models (GCMs)

QSRES-A1B» Emission Scenario

Climate Models
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Many models = many projections (some commonality)

2041-2070
SRES-A1B

Degrees C
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Basic projections: warming in western US



Forming a consensus of Future Climate Change

Degrees Celsius Change from 1971-2000

“High degree of Certainty”
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Forming a consensus of Future Climate Change
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Basic projections: meridional dipole in spring precipitation



Seasonal Differences in Precipitation
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Basic projection: Drier during “Fire Season”



Basic projections: increased variability in winter precipitation

15 Model Median




Projections: potential for a “wet” winter

15 Model Median




Basic projections: potential for a “dry” spring

50%
Increase
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Opportunistic Management

PDSI wetter

drier

Climate Variability
means...

Opportunity for Action

Opportunity for
Wildfire +
Invasive Spread
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Impacts on fire and invasives

Climate Change (means+variability)

1) Changing vAg A 2) Changing fire
geographic pvq occurrence, fire
distribution based severity, fire

on bioclimatic regimes
envelopes

_________ disturbance

Invasives Invasion

potential

Wildfire




Impacts on fire and invasives

1) Changing geographic distribution based on

bioclimatic envelopes

Requires an understanding of bioclimatic thresholds through
predictive vegetation models ... assuming stationary vegetation...

Development of these models requires presence/absence maps
and spread maps (not yet done for invasives at landscape scales)

Bioclimatic envelope needs to include climate variability
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Impacts on fire and invasives

2) Changing fire danger — based on NFDRS
NATIONAL FIRE DANGER RATING SYSTEM
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Output: numerical indices that provide managers a way to

assess day-to-day fire business decisions
(e.qg., suppression response, staffing levels, strategy)



Impacts on fire and invasives

1) Changing fire danger — based on NFDRS

Energy Release Component (ERC): potential fire intensity

Extreme Fire Danger: 97" percentile ERC for the historical period (1980-
2007)

ERC



Impacts on fire and invasives

1) Changing fire danger — based on NFDRS

Most important changes are the extremes, not the mean

Wildfire tend to happen

th i _
97T Percentile during extreme events

Probability of Occurrence

low moderate high  extreme
ERC



Impacts on fire and invasives

1) Changing fire danger — based on NFDRS

Wildfire tend to happen
during extreme events

How will climate change
alter the frequency of high
fire danger (ERC)?

Probability of Occurrence

low moderate high  extreme
ERC



Impacts on fire and invasives

1) Changing fire danger — based on NFDRS

Wildfire tend to happen
during extreme events

How will climate change
subsequently alter the
frequency of high fire

danger (ERC)?

Probability of Occurrence

low moderate high  extreme
ERC



Example of extreme fire danger

97t % (ERC=48) defines EXTREME fire danger for 2005 Cave Creek fire

3-1 3-16 4-1 4-16 5-1 5-16 6-1 6-16 7-1 7-16 8-1 8-16 9-1



Downscaling for Climate Change Assessment

Problems: (1) GCM resolution is far too coarse required for assessment
(2) Biases in climatology (spatially and temporally)
(3) Regional climate variability (topography, water)

Solution: Downscaling coarse scale predictors (500hPa height,
temp, precip, SLP) to fine scale predictants (TMAX, RHMIN,...)



Calculating future extreme fire danger

Emission Scenario
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Future Fire Danger
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Future Fire Danger: Cave Creek

Spring fire season
high confidence in
107 projected ERC increase

B \odel Spread
= Model Mean

Late summer/fall

high uncertainty yields low
confidence in change
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Future Fire Danger: Cave Creek

Length of fire season:
use 90t percentile ERC

80
as a proxy for start/end of
fire season to look at i
shifts in season length >
and timing éao»

80 v-,\ﬂode:' Spread a]? 20+
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| === Climatology

Percent of Days > 90" ERC
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""" Climatology |

June

*Earlier onset of fire
season, more intense
(higher fire danger at peak)



Future Fire Danger
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Summary

Climate-Fire-Invasives : Climate Variability
— Revised fire-climate relationships
— Phenological models for non-native successful establishment
— High resolution climate and meteorological datasets (CEFA)

Climate projections for the American Deserts

— High confidence in warming
— Decent confidence in decreases in winter/spring precipitation

— Variability is not dead, opportunities for management

Future fire in the deserts

— Drier springs = early fire danger + increase in extreme fire
danger

— Invasives can effectively convert a fuel-limited system to one
not limited by fuels or flammability



The end



Arizona
July, 2008 Monthly Observed Precipitation
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Bias Correction

Adjusted Temperature May 1-16
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Catalogue of Predictors

Coarse-Scale Predictors
Reanalsyis/GCMs

Fine-Scale Predictand
Obs/Future Downscaled




20" Century Climate: Model
Simulations
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Experiment 1: Only apply natural forcing: solar+volcanic



20" Century Climate: Model
Simulations

1.0
)
> 09 Observations
g
o 00y
& All Forcing
5 |
g -05
L
E= Pinatubo
Santa Mana Agung El Chichon
-10
1900 1920 1940 1960 1980 2000

Year
Experiment 2: Now apply anthropogenic forcing + natural
“Most of observed increase in global average temperatures since

the mid -20th century is very likely due to observed increase in
anthropogenic greenhouse gas concentrations.”

-IPCC AR4 (2007)



Basic projections: changes in water deficit

Filtered P-E Anom, Median of 19 models (red), 25th to 75th (pink); 50th P (blue), 50th E (green)
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« 18/19 GCMs predict decreases in water balance for the SW
United States (Arizona, New Mexico)

« Changes in atmospheric circulation and water transport lead
to storm track shifting poleward and not bringing winter rains
to the SW



State of Knowledge on Fire-Invasives
Relationships

Fire is part of a positive feedback cycle with certain
Invasives (particularly annuals) in desert ecosystems

*Promotes invasion through disturbance

sInvasive species (esp. annuals) are able to outcompete
natives in early regeneration

*Once established, fire frequency increases due to more
continuous fuel bed, wider range of conditions under which
fuels can burn %

Effectively converts a fuel-
limited system to one not
limited by fuels or flammability




