
Best Practices Close to the Ineffective Margins of Successful Seeding

"Even in the Desert, Plants Need

Water to Grow

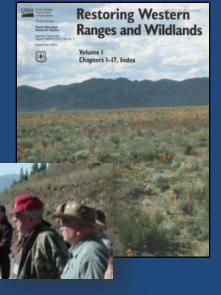
Bruce A. Roundy and Nathan L. Cline Brigham Young University

ES & BAER Lofty Objectives

- Public safety
- Stabilize- prevent further degradation
- Invasive weed treatments
- Revegetation where insufficient natural regeneration
 - Minimize erosion
 - Reduce non-native invasion
 - Prevent impairment to critical habitat for T&E species



February 2004


Rangeland Revegetation Principles

- Adequate precipitation
 - No rain, no success
- Control competition
 - Enough is enough
- Sow sufficient germinable seed before wet season
 - If some is good, is more better? When?
- Plant adapted species able to establish
 - Willie Survive? Is well begun half done?
- Seedbed and sowing adapted to species and site
 - "some fell on good ground"
- Post seeding management to allow persistence
 - Boomerang or baseball / What is success?

Adequate precipitation- No rain, no success What are the margins?

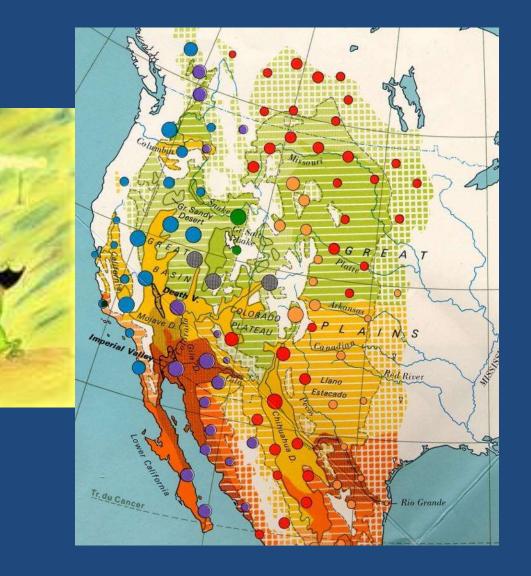
CLIMATIC CONDITIONS OF ARID REGIONS					
ARIDITY	Hyper-	Arid	Semi- arid	Sub- humid	
TEMPERATURE	P/Etp less than 0.03	P/Etp from 0.03 to 0.20	P/Etp from 0.20 to 0.50	P/Etp from 0.50 to 0.75	
Warm winter (20 to 30°)	0,00				
very warm summer (more than 30%					
warm aummair (20 to 30%				3333	
Mild winter (10 to 20*)					
very warm summer (more than 30%					
warm summer (20 to 30%)		-	-		
mild summer (10 to 20%)				100000	
Cool winter (0 to 10")	1 - 11				
sury warm summar (more than 30%					
werm suromer (20 to 30%				2200	
mild summer (10 to 20%)					
Cold winter (less than 0")	-				
very warm summer (more than 30%					
warm summer (20 for 30*)			him		
mild summer (10 to 20%		•		1.2222	

DROUGHTS

Number of dry months with less than 30 mm precipitation views than 1 01,2,3 04,5 06,7 08,9 (10,11)12 ment

Period of droughts and precipitation regimes

Dominant summer drought

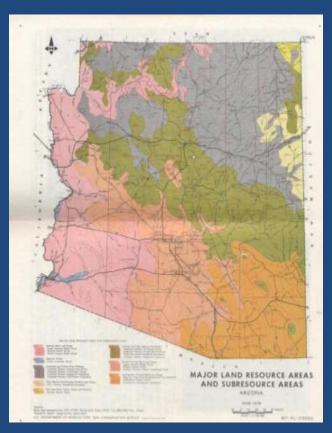

- winter precipitation regimes (sometimes shifted towards spring) : maximum drought is in summer.
- regimes with two rainy seasons, one towards the and of autums, the other at the beginning of spring, whiter drought is less pronounced and shorter than summer drought.

Dominant winter drought

- summer precipitation regimes (sometimes shifted towards autumn) : maximum drought is in winter.
- regimes with two rainy seasons, one lowards the end of spring, the other at the beginning of automn summer drought is less pronounced and shorter than winter drought.

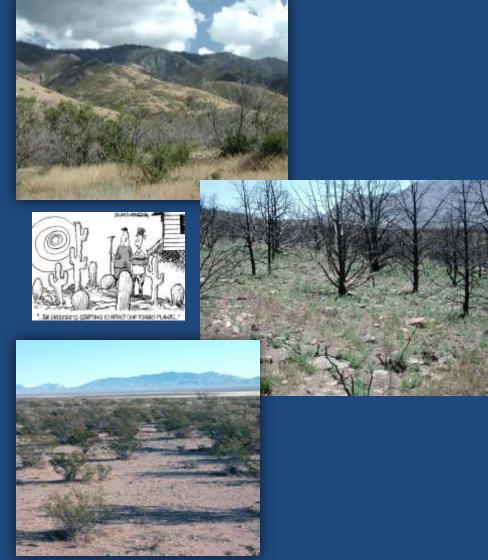
Transition regimes

- regimes with two rainy seasons, one in summer, the other in winter; distinct drought periods, in spring and autumn.
- irregular regimes; rains either occasional and unpredictable or in more humid cones, distributed throughout the year without well defined maxima, or with unpredictable maxima.



Annual precipitation and revegetation potential

- > 24 in. Excellent
- 16-24 in. Good
- 12-16 in. Some risk
- 8-11 in. Risky
- < 8 in. Major risk
- Jordan's limits:
 - * warm deserts: 5-6 in.
 following spring, summer seedings
 - * cold deserts: 4-5 in. after spring seedings, 3-4 in. after fall seedings



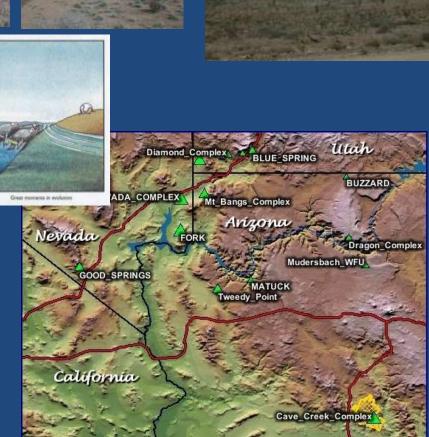
Revegetation potential

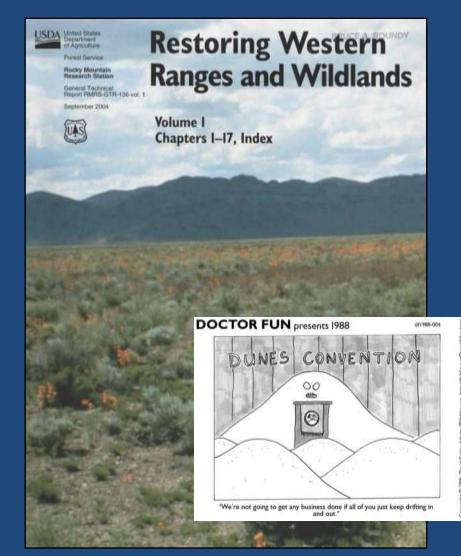
• Good:

- gambel oak, snowberry, true mountain mahogany, mountain big sagebrush, aspen
- Good to fair to borderline:
 - f pinyon, juniper, Wyoming big sagebrush, velvet and honey mesquite, black sagebrush
- Poor, but sometimes possible in wetter years
 - salt desert shrub, blackbrush, greasewood, winterfat, creosotebush, paloverde, bursage

Ecological and genetic potential

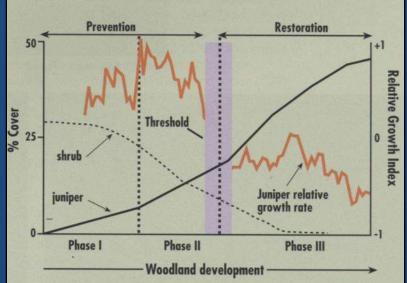
 Episodic or opportunistic establishment;
 longevity; nurse plants

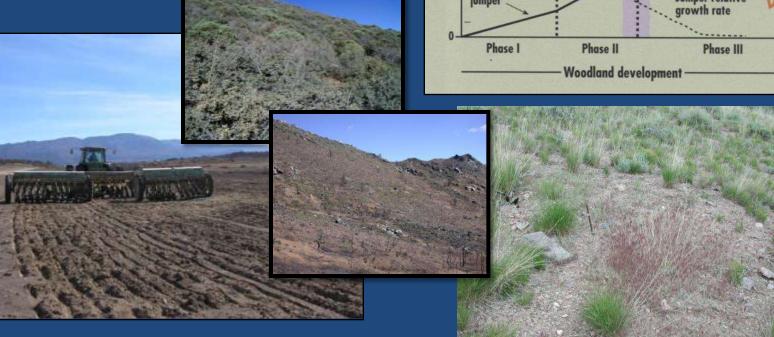




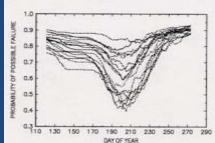
 Changing environments and invasives

Soils and potential


Soil	Low	Level of suitability			
property or quality	(essentially unsuitable)	Moderate	High	Reference	
USDA texture	Loamy sand, sand (<18% clay)	Clay, silty, clay, (≻35% clay)	Sandy loam, sandy clay loam, loam, day loam, sifly clay, loam (18- 35% clay)	Brady 1974	
Soil structure	Masaive, single grain	Platy, blocky prismatic	Granular	Soil Survey Staff 1962	
Bulk density (g/cm ²)	>1.6 cc	1.4-1.6	<1.4	Daddow and Warrington 1983 Russell 1973: White 1979	
Permeability (cm/hr)	(<0.5) or (>15.0)	5.0-15 and 0.5-1.5	0.6-5.0	Sol Survey Staff 1962	
Available water-holding capacity (cm H ₂ Q/ cm sol)	-0.08	0.08-0.16	>0.16	Brady 1974; Broadfoot and Burke 1968	
Coarse fcag content (%)/wr	>35	15-35	<15	Soil Survey Staff 1962	
Depth to limiting layer (cm)	<50	50-100	≥100	Soil Survey Staff 1962	
Slope %	20-30	10-20	<10	USDA 1965a; Forest Service Handbooks 2209.21 and 2209.31	
Organic matter (%)/wt surface soil	<0.5	0.5-2.0	>2.0	Donahue and others 1977; Foth 1978; Hendricks and Alexander 1957	
рH	(<5.1) (>8.4)	(5.1 to 6.5) or (7.4 to 8.4)	6.6 to 7.3	Soil Survey Staff 1962	
Salinity (mmhos/cm)*	B<	4-8	e4	Richards 1964	
Exchangeable sodium percentage (ESP) ⁶	>15	2-15	<2	Richardii 1954	

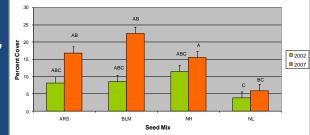

* Measured in terms of conductivity of saturated acil extract. * ESP refers to exchangeable sodium percentage.

Controlling competition Enough is enough


- Residuals and need to seed
- Post-fire weed control- Oust wind erosion problem
- Seeding in post-fire window

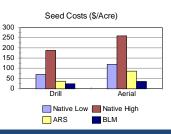
Sow sufficient germinable seed before wettest time of year- is more better?

- Drill vs broadcast rates
- Standard or higher rates?
- Fall for winter moisture areas
- Sagebrush broadcast late fall-on snow
- Spring or mid-summer for summer rainfall areas



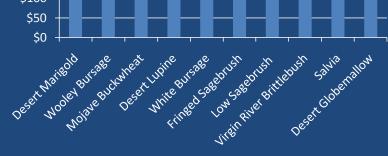
Plant adapted species able to establish Willie Survive?- Is well begun, half done?

- Non-natives permitted for BAER objectives but natives preferred
- Historical success of introduced wheatgrasses
- Natives can be successful, especially grasses
- Lack of native seeds for some areas
- Pick your exotic- is kochia better than annual weeds?
- First 2 years critical


Seeded Perennial Grass Cover; Year x Mix p= 0.7481

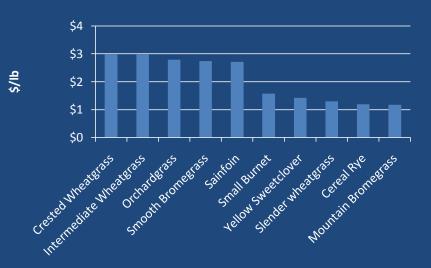
Planting exotic species is the only way scientists have found to stop the spread of cheatgrass. It's an "ecological Band-Aid, but it's the best thing we've got now." — James Young, Agricultural Research

Service scientist



Seed costs and use courtesy Scott Lambert

\$250 \$200 \$150 \$100


10 Most expensive species

10 Least expensive species

¢//l

Seed costs and use courtesy Scott Lambert

Seeding Rate (lbs/acre)

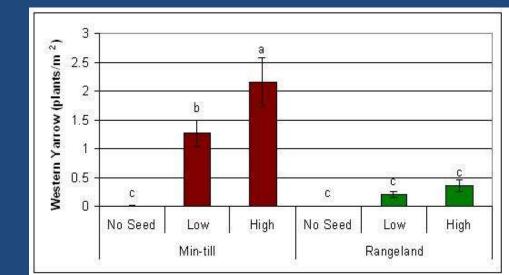
Top 10 volume of seeds

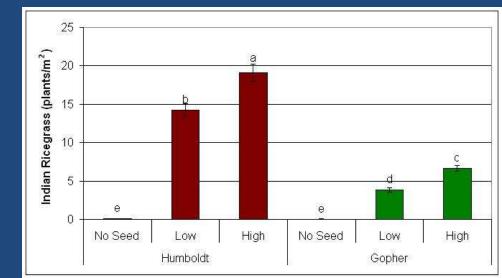
Top 10 species in total expenditures

Seedbed, sowing adapted to seeded species, site- "some fell on good ground"

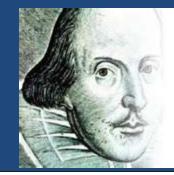
- Drill or aerial broadcast
- Standard vs new drills
- Chain or not?
- Seedbed modifications

Seed Drills Courtesy Rob Cox and Nancy Shaw

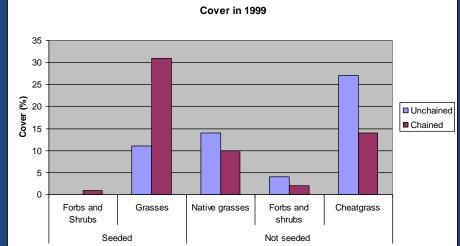



Results: Density of Seeded Species

Courtesy Cox and Shaw

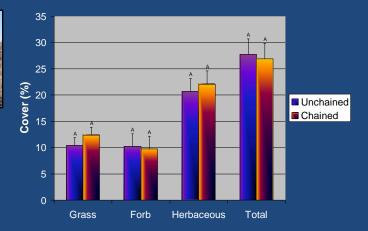

- Broadcast Species:
 - Significantly higher
 emergence at both low
 and high seeding rates
 from minimum-till drill

- Drilled Species:
 - No difference between drill types



To chain or not to chain?

• Ott study- 1996 fires



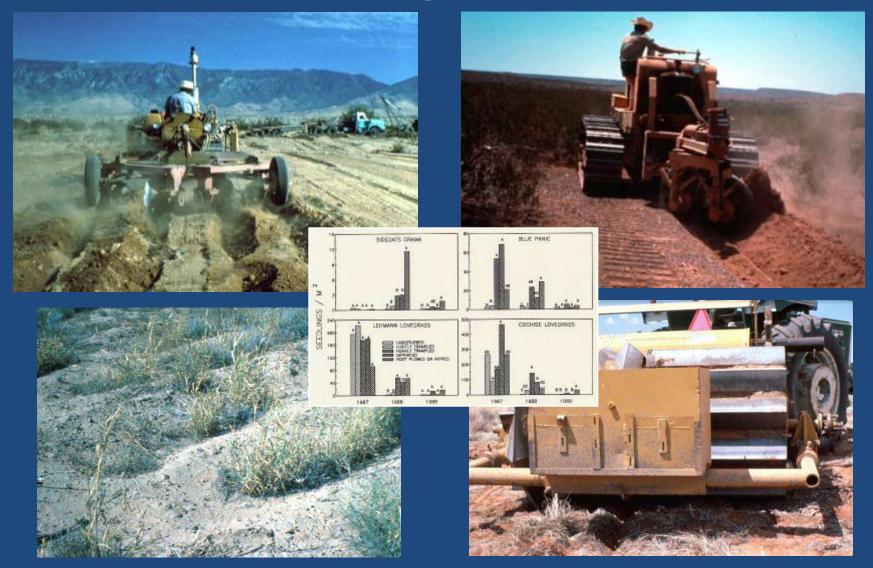
Henry Mountain study

Courtesy Matt Madsen

Chaining may reduce water repellency

Maximizing chances in marginal areas Small-scale approaches

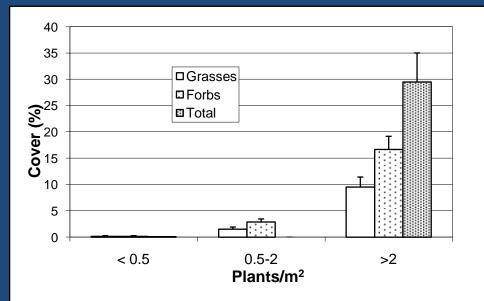
- Transplant to avoid seedling stage
- Spot or large-scale irrigation
- Capture water: runoffrun-in approaches
- Pitting, contour furrowing





Seedbed modifications to enhance direct-seeding establishment

Post-seeding monitoring and management-Boomerang or baseball?

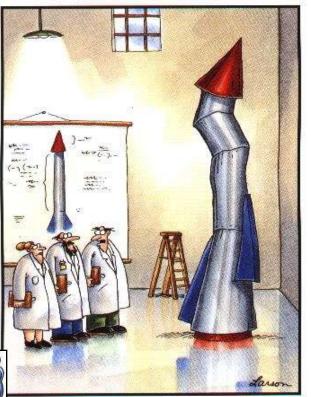


What is success?

- Initial density of weeds and seeded species?
- Initial success categories?
- Cover of desirable/seeded species?

- Information
 Projects
 - Designed
 - Small scale
 - Large scale
 - Mechanistic

Observations from the field



- Seeding species native to community with no proven establishment ability often results in failure
- Chaparral and mountain brush have better success than lower elevation sites, but don't need seeding as much
- Broadcast kochia is establishing in burned blackbrush
- Forbs like small burnet, blue and Lewis flax, and yarrow have success in some aerial seedings, persistence varies
- Native and introduced wheatgrasses most successful
- Grazing by wildhorses, wildlife, rodents can damage seedings
- Some managers think more time is needed to determine success, but seed longevity? Sagebrush may show up later.

Conclusions

- Direct seeding is risky for lower elevation and precipitation zones
- Bury seeds to improve success
- Broadcasting small-seeded species works sometimes
- Use proven introduced species on drier sites to break invasive fire cycle
- Use native grasses when available, other native species when feasible
- Avoid expensive, unproven species
- Pray for rain
- Monitor

"It's time we face reality, my friends. ... We're not exactly rocket scientists."